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Ambiguities 
•  Many phases of natural language processing aim at solving the 

ambiguities 
▫  A linguistic structure (f.i. sentence) is ambiguous if it has more than one 

interpretation 

▫  The ambiguities can be at different linguistic levels 
  lexical-morphology (fruit - noud/adj, flies - noun/verb, like - verb/prep) 
  semantics 
  syntax (subject: fruit flies/fruit; verb: flies/like)  
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fruit flies like a banana 

“fruit” moves in the air 
(“flies”) as it is for “a banana” 

the insects “fruit flies” are 
greedy of (“like”) the fruit 
“banana” 



Other examples of ambiguities 
•  Syntactic ambiguity 
▫  I saw the man with the binoculars 

  Who has the binoculars? 
▫  One morning I shot an elephant in my pajamas (Groucho Marx) 

  Who wears the pajamas? The elephant in the joke! 
▫  Flying planes can be dangerous 

  Being a pilot is a dangerous job? 
▫  Toilet out of order. Please use floor below 

  I hope you don’t misunderstand the advice!! 
▫  I once saw a deer riding my bicycle 

  The deer likes cycling.... 
•  Incremental parsing ambiguity (Reduced relative clauses ) 
▫  The horse raced past the barn fell 

  The syntax changes when the last word arrives... “raced” is a Past Participle not 
Past Tense 
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Eliza (1966) 
•  Eliza, developed by Weizenbaum in 1966, is one of the first software 

applications  that can manage a constrained conversation with an user 
▫  It emulates the answers of a Rogerian psychotherapist 
▫  It is a simple program that exploits pattern-matching to process the 

input sentence and to generate the reply 
▫  Actually it does not implement any knowledge/model of the real 

behavior of the psychotherapist 
▫  It creates a credible interaction since it simulates a kind of dialog where 

the agent can act without a real knowledge of the world (the reply is 
always built upon the sentence proposed by the other agent) 

▫  It is the first example of a chatterbot 
▫  The surprising outcome is that some users were actually believing that 

Eliza was really understanding their problems! (even after that the 
program characteristics had been clearly explained to them) 
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Eliza - example 

•  Replies are based on a script 
▫  When no specific reply can be obtained from the small knowledge base, the engine 

uses some rules for reformulating the question starting from the sentence 
proposed by the “patient” 
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>> Hello. 
How do you do.  Please state your problem. 
>> I feel sad 
Tell me more about such feelings. 
>> My mother hates me 
Tell me more about your family. 
>> My father fled when I was young 
Who else in your family fled when you was young  ? 
>> noone 
Really, noone ? 
>> Also my sister fled away 
Your sister ? 



Eliza – processing 1 

•  The input sentences is split into words 
•  A set of pre-replacements is applied 

•  All the found keywords are listed in descending weight value 

▫  the keywords are sequentially processed until an output is generated 
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pre: how what 
pre: you're you are 

key: remember 5 
key: if 3 
key: am 0 
key: i 0 



Eliza – processing 2 

•  For a given keyword, the corresponding decomposition rules in the 
knowledge base are checked 
▫  The first matching the input pattern is selected. If there is no match the 

following keyword is checked 

•  For the matching decomposition rule, one of the listed reassemble 
rules is applied (they are selected with a round robin policy) 
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key: i 0 
   decomp: * i am* @sad * 

 key: i 0 
decomp: * i feel * 
    reasmb: Tell me more about such feelings. 
    reasmb: Do you often feel (2) ? 
    reasmb: Do you enjoy feeling (2) ? 
    reasmb: Of what does feeling (2) remind you ? 



Eliza – processing 3 

•  The post-replacements are applied 

•  The resulting string is sent to the output 

•  The script also allows the definition of 
▫  What can be said at the beginning (initial) or at the end (final) 
▫  a list of synonyms (synon: sad unhappy depressed sick) 
▫  the actions to be performed when no keywords are found (key: xnone - 

reasmb: Please go on.) 
▫  a set of candidate replies that can be stored for random selection (the 

decomposition rule starts with $) 
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post: me you 
post: i you 
post: you I 



Words and morphology 
•  Words are the atomic elements in a language 
▫  Any application for automatic language processing heavily exploits the 

lexical knowledge 
▫  Regular expressions are a useful model for lexical entities 

  Modeling of word inflections (f.i. boy(ε|s), bell(a|o|e|i)) 
  Modeling of lexical categories (f.i. price [09]+’.’[0-9]{2}’ ‘€) 

▫  An important role in word analysis is played by morphological rules that 
model the transformations that can be applied to yield inflections or 
derivations of the same lexical unit (stem) 
  Plurals, verbal modes 
  The morphological rules are related to spelling rules 

▫  Morphological parsing aims at the decomposition of an input word into 
its component morphemes 
  seeing -> see – ing, boys -> boy - s 
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Morphological parsing 
•  Morphological parsing aims at the detection of word components 

(morphemes) given an inflected (or derived) input form (surface) 
▫  A similar task is stemming whose goal is to remove variations in words 

mapping them to a reference form (stem) 
▫  This task requires to model the morphological knowledge that is 

language dependent 
▫  An alternative solution is to store all the variations of the stem in the 

dictionary 
  It is a potentially inefficient solution 
  F.i. in English, the –ing suffix allows the generation of the ing form for any verb 

and the –s suffix is used for the plural of most nouns (productive suffix) 
  Generally standard suffixes are used for new words and the dictionary can be 

automatically extended (fax – faxare, click – cliccare for Italian ) 
  The listing of all the morphological variants can be complex for some languages 

(composed words as in German, Turkish, Arabic) 
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Morphemes & affixes 
•  A morpheme is the atomic units carrying meaning in a language 
•  There are two main categories of morphemes 
▫  Stem – the main morpheme in a word (it defines the word meaning) 
▫  Affixes – they add additional meanings of different types 

  prefixes – the recede the stem (unset : un- set; in Italian in-, ri- , dis-,…) 
  suffixes – they follow the stem (boys: boy –s; in Italian –mente, -tore, -zione, ..) 
  infixes – they are inserted into the stem (in some languages – Tagalog 

Philippines) 
  circumfixes – they precede and follow the stem (in German sagen [to say] the 

past participle is ge- sag -t) 
▫  Prefixes and suffixes are often referred to  concatenative morphology 

since a word is obtained by the concatenation of morphemes 
▫  Some languages have more complex compositional rules and follow a 

non-concatenative morphology (f.i. involving infixes) 
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Morphology – inflection & derivation 
•  A non-concatenative morphology may be based on templates or  root-and-

pattern 
▫  In Semitic languages the word root consists of a sequences of consonants and 

derived morphemes are obtained by inserting a specific vowel pattern 
  lmd [study/learn]: lamad [he studied], limed [he taught], lumad [he was taught] 

•  A word may have more than one affix 

▫  rewritten: re- writ –ten; unbelievably: un- believ –able –ly 
▫  disconnected: dis- connect –ed; unreasonably: un- reason -abl –y 
▫  The maximum number of affixes depends on the language. Languages that may 

have many affixes are said to be agglutinative  (Turkish up to 9-10 affixes/word) 
•  There two main modalities to yield words from morphemes 
▫  inflection – the stem is combined with a morpheme to obtain a word of the same 

grammatical class (f.i. English plurale–s or past tense –ed) 
▫  derivation – the stem is combined with a morpheme to obtain a word of a 

different grammatical class (f.i. compute [Verb] – computation [Noun]) 
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Morphology – inflections in English: nouns 

•  Inflection system in English is quite simple 
•  Only Nouns, Verbs and some Adjectives can be inflected using a very 

small set of affixes 
▫  Nouns 

  plural 
Most of the nouns appear in the root stem corresponding to the singular or the 
plural suffixes is added (-s ;-es for stems ending in –s, -z, -sh, -ch, sometimes in 
–x and for nouns ending in y preceded by a consonant for which the y is 
transformed into i -ies) 

  Saxon genitive 
It is obtained with the suffix –’s for singular nouns and plurals not ending in s 
(f.i. children’s) and with the suffix –’ for regular plurals and some nouns ending 
in s or z) 
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Morphology – inflections in English: verbs 

▫  Verbs 
The inflection rules for verbs are more complex than for nouns  (but 
other languages as Italian they are much more complex...) 
  There are 3 verb categories: main verbs (eat,sleep,walk,…), modal verbs (can, 

will, may,..) and primary verbs (have, be, do) 
  Most of main verbs are regular, that is the share the same set of suffixes with 

the same functionality 

  For regular verbs it is possible to generate all the inflections given the stem by 
adding the suffixes (eventually some spelling rules must be applied) 
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stem walk kiss map cry 

-s form walks kisses maps cries 

-ing participle walking kissing mapping crying 

Past form or 
-ed participle 

walked kissed mapped cried 



Morphology – inflections in English: irregular verbs 

▫  The class of regular verbs is also said productive since it is the one used 
to generate new words (in Italian is the first inflection form with infinite 
ending in are)  

▫  Irregular verbs have inflection forms that are not easy to be explained 
(usually they have 5 different forms, but there are up to 8 for “to be”) 
  They consist of few verbs (about 250) but they are among the most used in the 

language 
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stem eat catch cut 

-s form eats catches cuts 

-ing participle eating catching cutting 

Past form ate caught cut 

- ed participle eaten caught cut 



Morphology – derivations in English 

•  In general morphological derivations are more complex and less 
predictable (common derivations are often not applicable in 
general) 
▫  nominalization – Generation of nouns from verbs and adjectives 

▫  Generation of adjectives from verbs and nouns 
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-ation compute (V) computation 

-ee attend (V) attendee 

-er kill (V) killer 

-ness happy (A) happiness 

-al computation (N) computational 

-able drink (V) drinkable 

-less fear (N) fearless 



Morphological parsing 
•  A morphological parser associates an input word to its stem and a 

set of word features (f.i. number/person/mode/tense/…) 
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student student +N +SG 

students student +N +PL 

cities city +N +PL 

children child +N +PL 

looks look +V +3SG 
look +N +PL 

carrying carry +V +PRES-PART 

taught teach +V +PAST-PART 
teach +V +PAST 

+N  : Noun 
+PL: Plural 
+V  : Verb 
+3SG : third singular person 
+PAST : Past form 
+PAST-PART : Past Participle 
+PRES-PART : Present Participle   



Morphological parsers 
•  A morphological parser exploits the following sources of knowledge 
▫  Lexicon 

The list of the stems and of the affixes with the core information on them 
(f.i. if a stem is a verb or a noun) 

▫  Morphotactics 
The model for the morpheme composition rules (f.i. which morpheme 
classes can follow another class of morphemes in a word). 

▫  Orthographic rules (spelling rules) 
These rules describe how orthographic changes are applied when 
morphemes are combined to form a word 

▫  In general, rules on morpheme combination can be modeled by Finite 
State Automata (FSA) 
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Morphological parsers– example 1 

•  The parser models the presence of regular nouns (reg-noun) whose 
plural is obtained by adding the suffix –s 
▫  It models orthographic variations as in city-cities 

•  The parser manages separately irregular nouns  for which the 
singular (irreg-sg-noun) and the plural (irreg-pl-noun) are not easily 
correlated 
▫  f.i. mouse-mice, child-children 
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q0 q1 q2 

reg-noun plural -s 

irreg-pl-noun 
irreg-sg-noun 



Morphological parsers– example 2 

•  The parser exploits 3 different stem classes for verbs 
▫  reg-verb-stem, irreg-verb-stem, irreg-past-verb-form 

•  There are 4 classes for the affixes 
▫  -ed past, -ed past participle, -ing participle, 3rd singular -s 
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q0 q1 

q2 

reg-verb-stem 
q3 

reg-verb-stem 

irreg-verb-stem 

irreg-past-verb-form 

preterite -ed 

past paticiple -ed 
prog -ing 

3-sing -s 



Morphological parsers– example 3 

•  The adjectives may have different types of affixes 
▫  an optional prefix –un (but not for all!) 
▫  a mandatory root adj-root 
▫  an optional suffix (-er –ly –est) with eventual orthographic fixes 

▫  The adjectives are split into two classes depending on if they admit the 
prefix –un and the suffix -ly (Antworth, 1990) 
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q0 

q1 q2 
un- 

q5 
ε adj-root1 

-er –ly 
-est 

-er  -est q3 q4 

adj-root1 

adj-root2 

big, bigger, biggest 
cool, cooler, coolest, cooly 
clear, clearer, clearest, clearly 
unclear, unclearly 
happy, happier, happiest, happily 
unhappy, unhappier, unhappiest, unhappily 



Morphological parsers– example 4 

•  FSA for nominal and verbal derivations 
▫  there are many exceptions to these rules 
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q0 q1 q2 

-ize/V 

q5 

-ity/N 

q3 q4 
adj-al 

nouni 

q6 

q7 q8 

q9 

q10 
q11 

-ation/N 

-er/N -able/A 

-ness/N 

-ly/Adv 
-ness/N 

-ly/Adv -ful/A 

nounI 

verbk 

verbj 

adj-al 

adj-ous 

-ive/A 

-ative/A 

fossile-ize-ation/N 

verbs ending in –ize 
may be nominalized with the 
suffix -ation 

adjectives ending in –al 
or –able may be combined 
with the suffix –ity or 
sometimes -ness 

natural-ness/N 



Morphological recognizers/parsers 
•  Morphological recognizers can be obtained from the models based 

on FSA 
▫  The morphological recognizer decides if a word belongs to a given 

language 
▫  FSA modeling morphotactics and exploiting sub-lexicons that include 

lists of stems 
  sub-lexicons allow the expansion of some arcs (adj-root1, adj-root2,nouni,..) 

•  In general we are interested in morphological parsing 
▫  The stem (root morpheme) and the features are extracted from the word 
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cities            

city+N+PL 

Surface level 

Lexical level 
Morphological parsing 



Finite-State Transducers (FST) 
•  The mapping between two strings can be modeled with a Finite-

State Transducer 
▫  A FST defines a relation between two sets of strings 
▫  It is an extension of FSA as a Mealy machine 

  Q = {q0,….,qN} is the finite set of states 
  Σ is a finite alphabet of complex symbols. Each symbol is an input-output pair 

i:o where i is a symbol from the input alphabet I and o is a symbol from the 
output alphabet O (that includes also the symbol ε) 

  q0 is the start state 
  F ⊆ Q is the set of final accepting states 
  δ(q,i:o) is the state transition function 

▫  The set of pairs in Σ are also referred as admissible pairs 
▫  A FST models regular relations, an extension of regular languages to 

relations between sets of strings 
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FST – computation model  

•  The input of the FST corresponds to the lexical level and the output to the 
surface level 
▫  in the pair i:o, i corresponda to a character in the morphemes (lexical 

level) and o to a character in the word or ε (surface level)  
  Each pair i:o defines how the input symbol i is mapped to the output symbol o 
  Since it is common that an input symbol is mapped to itself, the default pairs 

a:a can be expressed as a 
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q0 

q1  

q7 

+N:ε 

irreg-sg-noun-form 

q4 

q1  

reg-noun-stem 

q4 

q1  q4 

irreg-pl-noun-form 

+N:ε 

+N:ε 

+PL:^s# 
+SG:# 

+SG:# 

# is the word end marker 
^s inserts s by applying 
the orthographic rules 



FST - categories 

•  Le transitions labeled with sub-lexicon categories must be expanded 
▫  The lexical must be updated such that irregular plurals are correctly 

mapped to the singular morpheme 

▫  The complete automaton is obtained by the cascade or composition of 
the FST that maps the stems and the FST that adds the affixes 

▫  However the concatenation of morphemes does not work when there is a 
spelling fix (f.i. box -> boxes) 
  Orthographic rules must be applied at the morpheme boundaries 
  These rules can be implemented by transducer automata 
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reg-noun irreg-pl-noun irreg-sg-noun 

c:c a:a t:t g:g o:e o:e s:s e:e g:g o:o o:o s:s e:e 

d:d o:o g:g m:m o:i u:ε s:c e:e m:m o:o u:u s:s e:e 



•  The application of orthographic rules at the morpheme boundaries 
after their concatenation can be modeled by another FST 

▫  The rule for the insertion of the E character when building a plural can 
be defined with the notation 

FST – orthographic rules 
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cities            

city+N+PL 

Surface level 

Lexical level 

   city^s Intermediate 
level 

-y^s → -ies 

replace ε with e when it 
appears between (x|s|z)^ 
and s# 

(the replacement of ε is 
actually an insertion) 



FST – E-insertion rule 

•  The pair ε:e between q2 and q3 models the insertion 
•  The pair ^:ε corresponds to the deletion of the start markers of the 

morphemes to generate the word 
•  The FST applies the rule only to the configurations that require it making no 

changes in the other cases (the rule ε:e is applied only in the right context) 
▫  State q3 models the insertion of the e that requires a further insertion of s and the 

subsequent word ending (#) 
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q0 q1 q2 

q5 

^:ε 
other 
# 

q3 q4 

other, # 
other, # 

# 

z,s,x 

z,s,x 
z,s,x 

other 

z, x 

^:ε 

^:ε s 

s ε:e 

other→ any admissible i:o pair 
that is not specified 



•  A morphological generator/parser can be built by stacking the modules for 
the morphological/orthographic parsing 

•  The same FST stack can be used in modeling the generation lexical→surface or 
parsing surface→lexical  
▫  Parsing may be more complex due to ambiguities (they can be solved only given 

the word context at the sentence level) 
  box +N +PL and box +V +3SG  are both correct 

FST+Lexicon+Rules 
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Tlex 

Te-insert 

b o x +N +PL 

b o x  ̂ s # 

b o x e s # Surface level 

Lexical level 

Intermediate level 

0 l1 l2 1 4 7 
ε 

0 0 0 1 2 3 
ε 

4 0 
ε 



SFTS 
•  There are tools for the automatic generation of FSTs 
▫  Stuttgart FST tools 

  A programming language for specifying a FST (SFST-PL) 
  A compiler for programs in SFST-PL (fst-compiler) 
  A set of tools for using, printing, compare FSTs 
  A library for FSTs in C++ 

▫  A FST can be specified by REs defined on the pairs i:o 
  (a:b|b:a|c:c)* maps the input string into an output string where the symbols c 

are left unchanged whereas the symbols a and b are swapped 
  a:b maps a to b in generation and b to a in parsing 
  the pair c:c can be shortened as c 
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(house|foot|mouse) <N>:<> <sg>:<> | \ 
(house<>:s | f o:e o:e t | {mouse}:{mice}) <N>:<> <pl>:<> 



Stemming – Porter stemmer 
•  A stemmer is a simple morphological parser that does not exploit a 

lexicon 
▫  It is used in Information Retrieval for keyword normalization 
▫  The stemming algorithm proposed by Porter (1980) for English is based 

on a cascade of simple rewriting rules 
  ATIONAL → ATE (relational → relate) 
  ING → ε if the stem contains a vowel (monitoring → monitor) 

▫  The oversimplification makes stemmers prone to errors and failures 
  university → universal, organization → organ 
  sparse … sparsity, matrices … matrix, explain… explanation (failures) 

▫  The Retrieval improvement is generally low (they are not used often) 
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Porter stemmer - 1 

•  Sets of literals 
▫  consonants (c): all literals excluding A, E, I, O, U and Y preceded by a 

consonant 
▫  vowels (v): A, E, I, O, U and Y not proceded by a consonant 

•  Each English word is approximated with the regular expression 
▫  (C|ε)(VC)m(V|ε) where C is a sequence of one or more consonants and V 

is a sequence of vowels 
▫  m is referred to as word (or part-of-word) measure 

  m=0 [TR][][], [][][EE], [TR][][EE] 
  m=1 [TR][OUBL][E],[TR][EES][] 
  m=2 [TR]([OUBL][ES])[], [PR]([IV][AT])[E] 

•  The rewriting rules have the following structure 
▫  (condition) S1 → S2 : If the word has the suffix S1 and the stem 

preceding S1 satisfies the condition, then S1 is rewritten with S2 
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Porter stemmer - 2 

•  Conditions are built using the following atoms combined with logic 
operators 
▫  m   - the stem measure 
▫  *S   - the stem ends in S (similar to other literals) 
▫  *v* - the stem contains a vowel 
▫  *d   - the stem ends with a double consonant (-TT, -SS) 
▫  *o   - the stem ends with the sequence CVC where the second C is not W, 

X or Y (-WIL, -HOP) 
•  The stemmer consists in 7 subsets of rules applied in sequence 

1.  Plural nouns and 3rd person verbs 
  SSES → SS (caresses → caress) 
  IES → I (ponies → poni, ties → ti) 
  SS → SS (caress → caress) 
  S → ε (cats → cat) 
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Porter stemmer - 3 

2.  Verb past tense and gerund 
  (m>1) EED → EE  (agreed → agree, feed → feed) 
  (*v*) ED → ε  (computed → comput, red → red) 
  (*v*) ING → ε (monitoring → monitor, sing → sing) 

1.  Cleanup – when the last two are used further cleanup rules are used 
(deletion of double literals – hopp[ing] → hop, insertion of the e at the end 
f.i. AT → ATE – comput[ed] → compute)   

3.  (*v*) Y → I 
  happy → happi 

4.  Morphological derivations I (multiple suffixes) 
  (m>0) ATIONAL → ATE (relational → relate) 
  (m>0) ATOR → ATE (operator → operate) 
  (m>0) BILITI → BLE (sensibiliti → sensible) 
  etc… (20 rules) 
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Porter stemmer - 4 
5.  Morphological derivation II (further multiple suffixes) 

  (m>0) ICATE → IC (triplicate → triplic) 
  (m>0) NESS → ε (goodness → good) 
  etc.. (6 rules) 

6.  Morphological derivations III (single suffixes) 
  (m>1) ENCE → ε (inference → infer) 
  (m>1) EMENT → ε (replacement → replac) 
  (*S or *T) & ION → ε (adoption → adopt) 
  etc.. (18 rules) 

7.  Cleanup 
  (m>1) E → ε (probate → probat, rate → rate) 
  (m=1 & ! *o) E → ε (cease → ceas) 

  (m>1 & *d*L) → [single letter] (controll → control) 
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Orthographic errors – correction/detection 

•  Given the character sequence of a word containing orthographic 
errors the goal is to compute the list of the candidate corrections 
▫  It is a problem of probabilistic translation – the misspelled word may 

correspond to more lexical forms each associated to a probability 
  spone  -> spine, sponge, spooned, spoke, shone, stone 

▫  The surface level form is available with an orthographic error and more 
lexical forms are compatible with it 

•  There are three categories of tasks that need to be faced 
▫  Detection of errors for non-words – the orthographic error yields a word 

that does not belong to the language (f.i. spone) 
▫  Error correction for isolated non-words 
▫  Error detection and correction given the context – We consider also 

errors that yield correct words (f.i. worm -> warm) 
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Types of errors 
•  The types of errors depend on the text generation modality 
▫  keyboard typing (1%-3% error rate)… but also handwriting 
▫  OCR for printed or handwritten characters (the error rate is quite 

variable and depends of the print/write quality) 

▫  Most of the errors are single (~94% for typed text) 
  insertion – a character is added (change -> chanhge) 
  deletion - a character is deleted (change -> cange) 
  substitution – a character is changed (change -> cjange) 
  transposition – two characters are swapped (change-> cahnge) 

▫  Most of the algorithms are designed and optimized for single errors 
  Most of the errors are typographical errors due to the use of the keyboard (f.i. 

substitution of characters corresponding to keys that are close to each other in 
the keyboard layout) 
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The noisy channel 
•  Errors can be modeled as the effect of a noisy channel on an 

instance of the lexical form yielding a surface level form 

▫  The model of the noisy channel describe the errors that can be generated 
▫  A bayesian classification approach can be used 

  The word w in the dictionary V that maximizes the probability P(w|o) of 
generating by the observation o 
  P(w|o)  is a model of the errors introduced by the channel 
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Noisy 
channel 

word noisy 
word 

correct-word = argmax   P(word|observation) 
                         word ∈ V 



Bayesian classification 
•  The maximization of P(w|o) requires the computation of P(w|o) for each 

word in the dictionary 
▫  A more manageable form is obtained applying the Bayes theorem 

  P(w) is the prior probability of the word w and it may be estimated from its 
frequency in a reference corpus for the language 

  P(o|w) models the possible variations (the observation o) that can be obtained 
from a dictionary word w. The implementation of the model requires 
additional hypotheses 

  P(o) is the prior probability of the observation o, but being a term shared by all 
the dictionary words it may be neglected when maximizing the probability 
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Likelihood estimation 
•  The prior may be estimated on a corpus by applying smoothing techniques 

to balance the estimate for rare words (some words may not even appear in 
the corpus) 

▫  N is the number of words in the corpus, |V| is the number of words in the 
dictionary. Each word has a bias value of 0.5 for the counting 

•  The likelihood p(o|w) may be estimated given a model of the errors 
(insertion/deletion/substitution/transposition) based on their context 
▫  The probability of substituting a character with another one can be 

estimated on a reference corpus with errors. The confusion matrix in the 
entry [‘a’,’s’] reports the number of times that ‘a’ is substituted by a 
‘s’ (Kernighan et al. 1990) 
  ‘a’ and ‘s’  are two adjacent keys on the keyboard 
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Confusion matrix 
•  In the system proposed by Kernighan et al. (1990), 4 confusion matrices, 

computed form examples,  are exploited 
▫  del[x,y] counts the number of times that the characters xy in the correct word 

have been written as x 
▫  ins[x,y] counts the number of times that the character x in the correct word has 

been written as xy 
▫  sub[x,y] is the number of times that x has been written as y 
▫  trans[x,y] ] is the number of times that xy has been written as yx 

▫  With the previous choice insertions/deletions are modeled as dependent 
on the preceding character 

•  The matrices can be estimated by an iterative procedure 
▫  the matrix entries are initialized with the same value 
▫  the corrections are computed exploiting the current model o -> w 
▫  the procedure is iterated using the updated model 
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Computation of P(o|w) 
•  The Kernighan algorithm is based on the hypothesis of single errors 
▫  Given an observation t, the algorithm finds  the dictionary words c that 

can be obtained from c with just one error of the considered types 
▫  The likelihood can be computed as follows 

  where p is the position of the character for which the observed string t and the 
correct one c differ 
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Minimum edit distance 
•  The general case in which there are no assumptions on the number 

of errors can be faced by exploiting the string edit distance 
▫  The bayesian technique can be seen as a method to compute a distance 

between a pair of strings 
  The “closest” string with respect to the observation is the dictionary string 

having the highest probability 
▫  The minimum edit distance is defined as the minimal number of edit 

operations needed to transform one string into the other 
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i n t e n t i o n!

e x e c u t i o n!

Track 

i n t e n ε t i o n!
ε e x e c u t i o n!

Alignment 

intention 
ntention 
etention 
exention 
exenution 
execution 

List of the operations 

delete i 

substitute n->e 

substitute t->x 

insert u 

substitute n->c 



Levenshtein distance 
•  A cost can be associated to each editing operation 
▫  For the original Levenshtein distance (1966) each operation has cost 1 

  dL(intention,execution) = 5 
▫  More complex weighting functions can be defined (f.i. based on the 

confusion matrix). The most probable alignment is obtained 
•  The minimum edit distance is computed by the dynamic 

programming  scheme (Bellman 1957) 
▫  The basic principle is that the optimal sequence of edit operations to map 

the input string into the output string is optimal also at each 
intermediate step 

▫  In fact, if there was a better path up to an intermediate configuration 
with respect to the one computer for the optimal alignment, it would be 
possible to replace it in the overall optimal sequence yielding a better 
value for the total cost (this would be a contradiction)   
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Edit distance computation 
•  The computation exploits the distance matrix having a column for each 

symbol in the goal sequence and one row for each symbol of the input string 
(edit-distance matrix) 
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# e x e c u t i o n 

# 0 1 2 3 4 5 6 7 8 9 
i 1 1 2 3 4 5 6 6 7 8 
n 2 2 2 3 4 5 6 7 7 7 
t 3 3 3 3 4 5 5 6 7 8 
e 4 3 4 3 4 5 6 6 7 8 
n 5 4 4 4 4 5 6 7 7 7 
t 6 5 5 5 5 5 5 6 7 8 
i 7 6 6 6 6 6 6 5 6 7 
o 8 7 7 7 7 7 7 6 5 6 
n 9 8 8 8 8 8 8 7 6 5 

dist[i,j] = min 

dist[i-1,j]+del-cost(si) 

dist[i-1,j-1]+subst-cost(si,tj) 

dist[i,j-1]+ins-cost(tj) 

i-1 

i 

j-1     j 

del 

ins 

subst 



Distance computation– subst-cost(s)=2 
•  The substitution cost can be considered equal to 2 (corresponds to consider 

a substitution as a deletion followed by an insertion) 
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# e x e c u t i o n 

# 0 1 2 3 4 5 6 7 8 9 
i 1 2 3 4 5 6 7 6 7 8 
n 2 3 4 5 6 7 8 7 8 7 
t 3 4 5 6 7 8 7 8 9 8 
e 4 3 4 5 6 7 8 9 10 9 
n 5 4 5 6 7 8 9 10 11 10 
t 6 5 6 7 8 9 8 9 10 11 
i 7 6 7 8 9 10 9 8 9 10 
o 8 7 8 9 10 11 10 9 8 9 
n 9 8 9 10 11 12 11 10 9 8 

intention ! !!
entention  !subst(i,e) !2!
exntention !ins(x) !1!
ex�tention!del(n) !1!
ex�ention !del(t) !1!
exention !subst(e,e) !0!
execntion !ins(c) !1!
execuntion !ins(u) !1!
exec�ution!del(n) !1!

iεnteεεntion!
exεεecuεtion!



context-sensitive spelling 
•  The are errors resulting in correct words 
▫  The error can be detected only taking into account the surrounding 

words (the context) 

▫  The problem can be faced by considering that some combinations of 
words are less likely than others 

▫  In general we can think to build a language model that allows the 
computation  of the probability of a given sequence of words 

▫  The same model can be used to predict the most likely word to be 
inserted into an incomplete sentence 

▫  The probabilities can be computed from collections of texts 
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I will arrive in fine [five] minutes 
Did you witch [watch] TV? 
I feel very worm [warm]! 



Word counting & N-grams 
•  The counting strategy should be well defined 
▫  Should the punctuation marks be considered? 
▫  Should character case be considered? 
▫  Should morphological parsing/stemming be exploited? 

•  The simplest (inaccurate) language model assumes that each word 
in a text appears independently on the others 
▫  We consider p(word) estimated as #word/TotWords  on a significant 

text corpus 
▫  The text is modeled as generated by a sequence of independent events 

•  A more accurate model takes into account the conditional 
probabilities among adjacent words (bi-grams) 
▫  We consider p(wordp|wordp-1) (f.i. computer network vs computer pear)  
▫  The model is more accurate but it is more difficult to be estimated with 

accuracy 
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N-grams & sequences 
•  If words at a given position in a text are considered as events, a 

sentence with n words is the joint event w1,w2,…,wn  characterized 
by a probability distribution 

▫  the probability can be factorized by applying the chain rule 

  the probabilities p(wi|w1..wi-1) model the generation of a word given the 
preceding words 

  Without any assumption the expansion is exactly equal to the joint probability 
(the derivation is based on the definition of conditional probability) 

  The problem is the estimation of p(wi|w1..wi-1) from observations, especially 
when i increases 
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Bi-grams Language Models 
•  A simplifying assumption is to consider the dependence only 

between adjacent words 
▫  With this assumption we only need to estimate the conditional 

probabilities for bi-grams (pairs of adjacent words) 
▫  Hence we need to estimate the probabilities p(wi|wi-1) 
▫  Given this assumption it results that 

  the p-th word in the sequence is independent of all the others given the 
preceding one 

  The assumption correspond to a Markovian property, i.e. the sequences are 
generated by a Markov chain whose states are the words 

  actually the p-th words depends on all the preceding ones but through the 
chain of choices that have been taken at each step of the generation 
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N-grams Language Models 
•  The model can be generalized by considering N-grams 
▫  We assume that a word in the sequence is independent given the 

preceding N-1 words 
▫  The assumption corresponds to the following approximation 

▫  The sequence probability is approximated as follows 

  where we assumed that the preceding words with index less than 1 are equal to 
a special symbol “sequence start”, f.i. for bigrams it holds the following 
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N-gram Language Models- example 

•  The N-grams model dependencies deriving from 
▫  grammatical rules (f.i. an adjective is likely to be followed by a noun) 
▫  semantics restrictions (f.i. eat a pear vs. eat a crowbar) 
▫  cultural restrictions (es. eat a cat) 

•  The probabilities depend on the considered context 
▫  the language use in a restricted specific context can be modeled 
▫  f.i. Berkely Restaurant Project (Jurafsky et al., 1994) 
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eat on 0.16 eat Thai 0.03 
eat some 0.06 eat breakfast 0.03 
eat lunch 0.06 eat in 0.02 
eat dinner 0.05 eat Chinese 0.02 
eat at 0.04 eat Mexican 0.02 
eat a 0.04 eat tomorrow 0.01 
eat indian 0.04 eat dessert 0.007 
eat today 0.03 eat British 0.001 



Estimation of the models 
•  The probabilities have values less than 1 
▫  The combination formula is a product that tends to become quite small 

with potential underflow problems 
▫  In general the computation is performed using the (logprob) 

•  The model estimation can be obtained by counting the N-grams and 
by normalizing the counts on a reference corpus 
▫  f.i. for bigrams the relative frequency is computed as follows 

▫  the estimate of the relative frequency is an example of Maximum 
Likelihood Estimation (Max P(corpus|M)) 
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Limits of N-grams based LMs 
•  The model accuracy increases with N 
▫  The syntactic/semantic contexts are better modeled 
▫  The drawback is the difficulty in the model parameter estimation (the 

conditional probabilities) 
▫  If the dictionary contains D terms (word forms with inflections) there are 

DN N-grams 

  A corpus C words “long” contains C N-grams (each word generates exactly a 
sample for one N-gram) 

  For a significant estimate of the parameters, the corpus size should increase 
exponentially in the order N of N-grams 

  f.i. given D=30000 there are 900 millions bigrams and a corpus with 
C=1.000.000 words would not be adequate to compute an accurate estimate 
for the language (especially for the most rare bigrams) 

  Hence, the resulting model can be heavily dependent on the corpus exploited in 
the estimation of the parameters 
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Smoothing 
•  One of the problems in the estimation of the N-gram probabilities 

on a corpus with limited size is that some of the “valid” N-grams 
might not appear at all  
▫  The matrix for the computation of the bigram frequencies is very sparse 

in general 
▫  Bigrams with 0 occurrences  would be considered with 0 probability 
▫  Analogously the estimate of the probabilities for the N-grams with low 

frequencies is not very accurate 
▫  Smoothing techniques  can be applied to give a better estimate for the N-

grams with low (zero) probability 
▫  In general these techniques apply a fix on the counts given some criteria 
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Smoothing – add-one 

•  The most simple technique is the add-one 
▫  1 is added to all counts 
▫  It is simple but its performances are not good 
▫  f.i. for the estimate of the unigram (single words) probability estimate 

  #w* is the count with the add-one “fix” 
▫  For bigrams the estimate is fixed as follows 

  in this case the variation may be significant since |D| is usually much greater 
than #wp-1 (all the bigrams are considered valid) 
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Smoothing – Witten-Bell Discounting 1 

•  It is based on the idea that a non observed event is an event that has 
not occurred yet (but it can) 
▫  the probability of the occurrence of an N-gram with null frequency is 

modeled with the probability of observing an N-gram for the first time 
  The count T  of the events observed only one time is used to estimate the count 

of those that have never been observed 
  if many events have been observed it is likely that many events will be observed 

in the future 
▫  The number of N-gram observed for the first time is exactly the number 

of different N-grams observed in the corpus 
▫  The total probability of the non-observed N-grams - p(new) – is 

estimated by 
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T is the number of observed new events 
N is the number of observed events 



Smoothing – Witten-Bell Discounting 2 

•  If we assume that all the non-observed event have the same 
probability 

▫  The probabilities of the observed events should be coherently reduced 

•  For bigrams (N-grams) the considered counts are conditioned with 
respect to the context 
▫  The considered counts are T(wx) – number of new types of observed 

bigrams where wx is the preceding word – and N(wx) – total number of 
bigrams that have wx as preceding word 
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Smoothing – Witten-Bell Discounting 3 

•  The total probability of the non-observed bigrams related to wx  is 

▫  By a uniform distribution of this probability on all the non-observed 
bigrams it can be obtained 

▫  For bigrams having non-null frequency the probability is computed as 
follows 
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Smoothing – Good-Turing 

•  The probability of the N-grams with higher counts is redistributed to the N-
grams with null (or low) counts 
▫  Nc is the number of N-grams occurring c times (N0is the number of  

bigrams appearing 0 times, N1 those with counts equal to 1,..) 
▫  The Good-Turing estimate modifies the counts such that 

  f.i. the count for non-observed bigrams (c=0) is estimated as the number of 
bigrams observed just once divided by the number of the never observed 
bigrams (the |D|2 valid bigrams except the observed ones) 

  in general it is applied only for c ≤ k (f.i. k=5) that is only the counts above a 
certain threshold are considered reliable 
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Backoff 
•  If there are no observations for a given N-gram, its statistics can be 

estimated exploiting the correlated N-1-grams 
▫  to estimate the probability P(wp|wp-1wp-2), we can exploit the knowledge 

on P(wp|wp-1) 
▫  to estimate the probability of the bigram P(wp|wp-1, we can exploit the 

available information on the unigram P(wp) 
•  The backoff techniques exploit the hierarchy among the N-grams to 

improve the estimates 
▫  f.i. for trigrams the following estimate can be exploited 
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backoff & discounting 
•  The smoothing/discounting techniques “extract” part of the probability 

from the observed events to distribute it (uniformly) to non-observed events 
▫  A smoothing technique defining the amount of probability to be assigned 

to non-observed events can be combined with the backoff method giving 
a modality to distribute the probability among the considered events 

▫  The backoff assigns a non null probability to events that with the MLE 
estimate would have a zero probability. This added probability is to be 
divided among all the events 

▫  The general probability estimate can be computed as follows 

  where θ(p) = 0 if p>0 and  θ(p) = 1 is p=0 selects/deselects the backoff 
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Backoff & discounting – computation 1 

•  The probabilities of the non null N-grams are estimated as 

▫  where the count with discount #* allows the transfer of the probability to 
the non observed events 

▫  The amount of probability to be transferred from a given context that 
represents a (N-1)-gram is 

▫  Each (N-1)-gram will receive only a fraction of β 
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Backoff & discounting – computation 2 

•  The probabilities of the (N-1)-grams are computed from β by 
normalizing  with respect to the total assigned probability 
▫  the value of the backoff coefficients α is derived 

▫  the amount of discount applied to each N-gram and the fraction 
redistributed to the (N-1)-grams are peculiar of each N-gram 

▫  Summarizing for trigrams the backoff computation is the following  
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