
Natural Language Processing

Part 1: Words….
 Morphology
 Spell checking
 N-gram models

Language & knowledge - 1

Language processing
technologies

Marco Maggini

2

Language & knowledge- 2

Language processing
technologies

Marco Maggini

3

Ambiguities
•  Many phases of natural language processing aim at solving the

ambiguities
▫  A linguistic structure (f.i. sentence) is ambiguous if it has more than one

interpretation

▫  The ambiguities can be at different linguistic levels
  lexical-morphology (fruit - noud/adj, flies - noun/verb, like - verb/prep)
  semantics
  syntax (subject: fruit flies/fruit; verb: flies/like)

Language processing
technologies

Marco Maggini

4

fruit flies like a banana

“fruit” moves in the air
(“flies”) as it is for “a banana”

the insects “fruit flies” are
greedy of (“like”) the fruit
“banana”

Other examples of ambiguities
•  Syntactic ambiguity
▫  I saw the man with the binoculars

  Who has the binoculars?
▫  One morning I shot an elephant in my pajamas (Groucho Marx)

  Who wears the pajamas? The elephant in the joke!
▫  Flying planes can be dangerous

  Being a pilot is a dangerous job?
▫  Toilet out of order. Please use floor below

  I hope you don’t misunderstand the advice!!
▫  I once saw a deer riding my bicycle

  The deer likes cycling....
•  Incremental parsing ambiguity (Reduced relative clauses)
▫  The horse raced past the barn fell

  The syntax changes when the last word arrives... “raced” is a Past Participle not
Past Tense

Language processing
technologies

Marco Maggini

5

Eliza (1966)
•  Eliza, developed by Weizenbaum in 1966, is one of the first software

applications that can manage a constrained conversation with an user
▫  It emulates the answers of a Rogerian psychotherapist
▫  It is a simple program that exploits pattern-matching to process the

input sentence and to generate the reply
▫  Actually it does not implement any knowledge/model of the real

behavior of the psychotherapist
▫  It creates a credible interaction since it simulates a kind of dialog where

the agent can act without a real knowledge of the world (the reply is
always built upon the sentence proposed by the other agent)

▫  It is the first example of a chatterbot
▫  The surprising outcome is that some users were actually believing that

Eliza was really understanding their problems! (even after that the
program characteristics had been clearly explained to them)

Language processing
technologies

Marco Maggini

6

Eliza - example

•  Replies are based on a script
▫  When no specific reply can be obtained from the small knowledge base, the engine

uses some rules for reformulating the question starting from the sentence
proposed by the “patient”

Language processing
technologies

Marco Maggini

7

>> Hello.
How do you do. Please state your problem.
>> I feel sad
Tell me more about such feelings.
>> My mother hates me
Tell me more about your family.
>> My father fled when I was young
Who else in your family fled when you was young ?
>> noone
Really, noone ?
>> Also my sister fled away
Your sister ?

Eliza – processing 1

•  The input sentences is split into words
•  A set of pre-replacements is applied

•  All the found keywords are listed in descending weight value

▫  the keywords are sequentially processed until an output is generated

Language processing
technologies

Marco Maggini

8

pre: how what
pre: you're you are

key: remember 5
key: if 3
key: am 0
key: i 0

Eliza – processing 2

•  For a given keyword, the corresponding decomposition rules in the
knowledge base are checked
▫  The first matching the input pattern is selected. If there is no match the

following keyword is checked

•  For the matching decomposition rule, one of the listed reassemble
rules is applied (they are selected with a round robin policy)

Language processing
technologies

Marco Maggini

9

key: i 0
 decomp: * i am* @sad *

 key: i 0
decomp: * i feel *
 reasmb: Tell me more about such feelings.
 reasmb: Do you often feel (2) ?
 reasmb: Do you enjoy feeling (2) ?
 reasmb: Of what does feeling (2) remind you ?

Eliza – processing 3

•  The post-replacements are applied

•  The resulting string is sent to the output

•  The script also allows the definition of
▫  What can be said at the beginning (initial) or at the end (final)
▫  a list of synonyms (synon: sad unhappy depressed sick)
▫  the actions to be performed when no keywords are found (key: xnone -

reasmb: Please go on.)
▫  a set of candidate replies that can be stored for random selection (the

decomposition rule starts with $)

Language processing
technologies

Marco Maggini

10

post: me you
post: i you
post: you I

Words and morphology
•  Words are the atomic elements in a language
▫  Any application for automatic language processing heavily exploits the

lexical knowledge
▫  Regular expressions are a useful model for lexical entities

  Modeling of word inflections (f.i. boy(ε|s), bell(a|o|e|i))
  Modeling of lexical categories (f.i. price [09]+’.’[0-9]{2}’ ‘€)

▫  An important role in word analysis is played by morphological rules that
model the transformations that can be applied to yield inflections or
derivations of the same lexical unit (stem)
  Plurals, verbal modes
  The morphological rules are related to spelling rules

▫  Morphological parsing aims at the decomposition of an input word into
its component morphemes
  seeing -> see – ing, boys -> boy - s

Language processing
technologies

Marco Maggini

11

Morphological parsing
•  Morphological parsing aims at the detection of word components

(morphemes) given an inflected (or derived) input form (surface)
▫  A similar task is stemming whose goal is to remove variations in words

mapping them to a reference form (stem)
▫  This task requires to model the morphological knowledge that is

language dependent
▫  An alternative solution is to store all the variations of the stem in the

dictionary
  It is a potentially inefficient solution
  F.i. in English, the –ing suffix allows the generation of the ing form for any verb

and the –s suffix is used for the plural of most nouns (productive suffix)
  Generally standard suffixes are used for new words and the dictionary can be

automatically extended (fax – faxare, click – cliccare for Italian)
  The listing of all the morphological variants can be complex for some languages

(composed words as in German, Turkish, Arabic)

Language processing
technologies

Marco Maggini

12

Morphemes & affixes
•  A morpheme is the atomic units carrying meaning in a language
•  There are two main categories of morphemes
▫  Stem – the main morpheme in a word (it defines the word meaning)
▫  Affixes – they add additional meanings of different types

  prefixes – the recede the stem (unset : un- set; in Italian in-, ri- , dis-,…)
  suffixes – they follow the stem (boys: boy –s; in Italian –mente, -tore, -zione, ..)
  infixes – they are inserted into the stem (in some languages – Tagalog

Philippines)
  circumfixes – they precede and follow the stem (in German sagen [to say] the

past participle is ge- sag -t)
▫  Prefixes and suffixes are often referred to concatenative morphology

since a word is obtained by the concatenation of morphemes
▫  Some languages have more complex compositional rules and follow a

non-concatenative morphology (f.i. involving infixes)

Language processing
technologies

Marco Maggini

13

Morphology – inflection & derivation
•  A non-concatenative morphology may be based on templates or root-and-

pattern
▫  In Semitic languages the word root consists of a sequences of consonants and

derived morphemes are obtained by inserting a specific vowel pattern
  lmd [study/learn]: lamad [he studied], limed [he taught], lumad [he was taught]

•  A word may have more than one affix

▫  rewritten: re- writ –ten; unbelievably: un- believ –able –ly
▫  disconnected: dis- connect –ed; unreasonably: un- reason -abl –y
▫  The maximum number of affixes depends on the language. Languages that may

have many affixes are said to be agglutinative (Turkish up to 9-10 affixes/word)
•  There two main modalities to yield words from morphemes
▫  inflection – the stem is combined with a morpheme to obtain a word of the same

grammatical class (f.i. English plurale–s or past tense –ed)
▫  derivation – the stem is combined with a morpheme to obtain a word of a

different grammatical class (f.i. compute [Verb] – computation [Noun])

Language processing
technologies

Marco Maggini

14

Morphology – inflections in English: nouns

•  Inflection system in English is quite simple
•  Only Nouns, Verbs and some Adjectives can be inflected using a very

small set of affixes
▫  Nouns

  plural
Most of the nouns appear in the root stem corresponding to the singular or the
plural suffixes is added (-s ;-es for stems ending in –s, -z, -sh, -ch, sometimes in
–x and for nouns ending in y preceded by a consonant for which the y is
transformed into i -ies)

  Saxon genitive
It is obtained with the suffix –’s for singular nouns and plurals not ending in s
(f.i. children’s) and with the suffix –’ for regular plurals and some nouns ending
in s or z)

Language processing
technologies

Marco Maggini

15

Morphology – inflections in English: verbs

▫  Verbs
The inflection rules for verbs are more complex than for nouns (but
other languages as Italian they are much more complex...)
  There are 3 verb categories: main verbs (eat,sleep,walk,…), modal verbs (can,

will, may,..) and primary verbs (have, be, do)
  Most of main verbs are regular, that is the share the same set of suffixes with

the same functionality

  For regular verbs it is possible to generate all the inflections given the stem by
adding the suffixes (eventually some spelling rules must be applied)

Language processing
technologies

Marco Maggini

16

stem walk kiss map cry

-s form walks kisses maps cries

-ing participle walking kissing mapping crying

Past form or
-ed participle

walked kissed mapped cried

Morphology – inflections in English: irregular verbs

▫  The class of regular verbs is also said productive since it is the one used
to generate new words (in Italian is the first inflection form with infinite
ending in are)

▫  Irregular verbs have inflection forms that are not easy to be explained
(usually they have 5 different forms, but there are up to 8 for “to be”)
  They consist of few verbs (about 250) but they are among the most used in the

language

Language processing
technologies

Marco Maggini

17

stem eat catch cut

-s form eats catches cuts

-ing participle eating catching cutting

Past form ate caught cut

- ed participle eaten caught cut

Morphology – derivations in English

•  In general morphological derivations are more complex and less
predictable (common derivations are often not applicable in
general)
▫  nominalization – Generation of nouns from verbs and adjectives

▫  Generation of adjectives from verbs and nouns

Language processing
technologies

Marco Maggini

18

-ation compute (V) computation

-ee attend (V) attendee

-er kill (V) killer

-ness happy (A) happiness

-al computation (N) computational

-able drink (V) drinkable

-less fear (N) fearless

Morphological parsing
•  A morphological parser associates an input word to its stem and a

set of word features (f.i. number/person/mode/tense/…)

Language processing
technologies

Marco Maggini

19

student student +N +SG

students student +N +PL

cities city +N +PL

children child +N +PL

looks look +V +3SG
look +N +PL

carrying carry +V +PRES-PART

taught teach +V +PAST-PART
teach +V +PAST

+N : Noun
+PL: Plural
+V : Verb
+3SG : third singular person
+PAST : Past form
+PAST-PART : Past Participle
+PRES-PART : Present Participle

Morphological parsers
•  A morphological parser exploits the following sources of knowledge
▫  Lexicon

The list of the stems and of the affixes with the core information on them
(f.i. if a stem is a verb or a noun)

▫  Morphotactics
The model for the morpheme composition rules (f.i. which morpheme
classes can follow another class of morphemes in a word).

▫  Orthographic rules (spelling rules)
These rules describe how orthographic changes are applied when
morphemes are combined to form a word

▫  In general, rules on morpheme combination can be modeled by Finite
State Automata (FSA)

Language processing
technologies

Marco Maggini

20

Morphological parsers– example 1

•  The parser models the presence of regular nouns (reg-noun) whose
plural is obtained by adding the suffix –s
▫  It models orthographic variations as in city-cities

•  The parser manages separately irregular nouns for which the
singular (irreg-sg-noun) and the plural (irreg-pl-noun) are not easily
correlated
▫  f.i. mouse-mice, child-children

Language processing
technologies

Marco Maggini

21

q0 q1 q2

reg-noun plural -s

irreg-pl-noun
irreg-sg-noun

Morphological parsers– example 2

•  The parser exploits 3 different stem classes for verbs
▫  reg-verb-stem, irreg-verb-stem, irreg-past-verb-form

•  There are 4 classes for the affixes
▫  -ed past, -ed past participle, -ing participle, 3rd singular -s

Language processing
technologies

Marco Maggini

22

q0 q1

q2

reg-verb-stem
q3

reg-verb-stem

irreg-verb-stem

irreg-past-verb-form

preterite -ed

past paticiple -ed
prog -ing

3-sing -s

Morphological parsers– example 3

•  The adjectives may have different types of affixes
▫  an optional prefix –un (but not for all!)
▫  a mandatory root adj-root
▫  an optional suffix (-er –ly –est) with eventual orthographic fixes

▫  The adjectives are split into two classes depending on if they admit the
prefix –un and the suffix -ly (Antworth, 1990)

Language processing
technologies

Marco Maggini

23

q0

q1 q2
un-

q5
ε adj-root1

-er –ly
-est

-er -est q3 q4

adj-root1

adj-root2

big, bigger, biggest
cool, cooler, coolest, cooly
clear, clearer, clearest, clearly
unclear, unclearly
happy, happier, happiest, happily
unhappy, unhappier, unhappiest, unhappily

Morphological parsers– example 4

•  FSA for nominal and verbal derivations
▫  there are many exceptions to these rules

Language processing
technologies

Marco Maggini

24

q0 q1 q2

-ize/V

q5

-ity/N

q3 q4
adj-al

nouni

q6

q7 q8

q9

q10
q11

-ation/N

-er/N -able/A

-ness/N

-ly/Adv
-ness/N

-ly/Adv -ful/A

nounI

verbk

verbj

adj-al

adj-ous

-ive/A

-ative/A

fossile-ize-ation/N

verbs ending in –ize
may be nominalized with the
suffix -ation

adjectives ending in –al
or –able may be combined
with the suffix –ity or
sometimes -ness

natural-ness/N

Morphological recognizers/parsers
•  Morphological recognizers can be obtained from the models based

on FSA
▫  The morphological recognizer decides if a word belongs to a given

language
▫  FSA modeling morphotactics and exploiting sub-lexicons that include

lists of stems
  sub-lexicons allow the expansion of some arcs (adj-root1, adj-root2,nouni,..)

•  In general we are interested in morphological parsing
▫  The stem (root morpheme) and the features are extracted from the word

Language processing
technologies

Marco Maggini

25

cities

city+N+PL

Surface level

Lexical level
Morphological parsing

Finite-State Transducers (FST)
•  The mapping between two strings can be modeled with a Finite-

State Transducer
▫  A FST defines a relation between two sets of strings
▫  It is an extension of FSA as a Mealy machine

  Q = {q0,….,qN} is the finite set of states
  Σ is a finite alphabet of complex symbols. Each symbol is an input-output pair

i:o where i is a symbol from the input alphabet I and o is a symbol from the
output alphabet O (that includes also the symbol ε)

  q0 is the start state
  F ⊆ Q is the set of final accepting states
  δ(q,i:o) is the state transition function

▫  The set of pairs in Σ are also referred as admissible pairs
▫  A FST models regular relations, an extension of regular languages to

relations between sets of strings

Language processing
technologies

Marco Maggini

26

FST – computation model

•  The input of the FST corresponds to the lexical level and the output to the
surface level
▫  in the pair i:o, i corresponda to a character in the morphemes (lexical

level) and o to a character in the word or ε (surface level)
  Each pair i:o defines how the input symbol i is mapped to the output symbol o
  Since it is common that an input symbol is mapped to itself, the default pairs

a:a can be expressed as a

Language processing
technologies

Marco Maggini

27

q0

q1

q7

+N:ε

irreg-sg-noun-form

q4

q1

reg-noun-stem

q4

q1 q4

irreg-pl-noun-form

+N:ε

+N:ε

+PL:^s#
+SG:#

+SG:#

is the word end marker
^s inserts s by applying
the orthographic rules

FST - categories

•  Le transitions labeled with sub-lexicon categories must be expanded
▫  The lexical must be updated such that irregular plurals are correctly

mapped to the singular morpheme

▫  The complete automaton is obtained by the cascade or composition of
the FST that maps the stems and the FST that adds the affixes

▫  However the concatenation of morphemes does not work when there is a
spelling fix (f.i. box -> boxes)
  Orthographic rules must be applied at the morpheme boundaries
  These rules can be implemented by transducer automata

Language processing
technologies

Marco Maggini

28

reg-noun irreg-pl-noun irreg-sg-noun

c:c a:a t:t g:g o:e o:e s:s e:e g:g o:o o:o s:s e:e

d:d o:o g:g m:m o:i u:ε s:c e:e m:m o:o u:u s:s e:e

•  The application of orthographic rules at the morpheme boundaries
after their concatenation can be modeled by another FST

▫  The rule for the insertion of the E character when building a plural can
be defined with the notation

FST – orthographic rules

Language processing
technologies

Marco Maggini

29

cities

city+N+PL

Surface level

Lexical level

 city^s Intermediate
level

-y^s → -ies

replace ε with e when it
appears between (x|s|z)^
and s#

(the replacement of ε is
actually an insertion)

FST – E-insertion rule

•  The pair ε:e between q2 and q3 models the insertion
•  The pair ^:ε corresponds to the deletion of the start markers of the

morphemes to generate the word
•  The FST applies the rule only to the configurations that require it making no

changes in the other cases (the rule ε:e is applied only in the right context)
▫  State q3 models the insertion of the e that requires a further insertion of s and the

subsequent word ending (#)

Language processing
technologies

Marco Maggini

30

q0 q1 q2

q5

^:ε
other

q3 q4

other, #
other, #

z,s,x

z,s,x
z,s,x

other

z, x

^:ε

^:ε s

s ε:e

other→ any admissible i:o pair
that is not specified

•  A morphological generator/parser can be built by stacking the modules for
the morphological/orthographic parsing

•  The same FST stack can be used in modeling the generation lexical→surface or
parsing surface→lexical
▫  Parsing may be more complex due to ambiguities (they can be solved only given

the word context at the sentence level)
  box +N +PL and box +V +3SG are both correct

FST+Lexicon+Rules

Language processing
technologies

Marco Maggini

31

Tlex

Te-insert

b o x +N +PL

b o x ̂ s #

b o x e s # Surface level

Lexical level

Intermediate level

0 l1 l2 1 4 7
ε

0 0 0 1 2 3
ε

4 0
ε

SFTS
•  There are tools for the automatic generation of FSTs
▫  Stuttgart FST tools

  A programming language for specifying a FST (SFST-PL)
  A compiler for programs in SFST-PL (fst-compiler)
  A set of tools for using, printing, compare FSTs
  A library for FSTs in C++

▫  A FST can be specified by REs defined on the pairs i:o
  (a:b|b:a|c:c)* maps the input string into an output string where the symbols c

are left unchanged whereas the symbols a and b are swapped
  a:b maps a to b in generation and b to a in parsing
  the pair c:c can be shortened as c

Language processing
technologies

Marco Maggini

32

(house|foot|mouse) <N>:<> <sg>:<> | \
(house<>:s | f o:e o:e t | {mouse}:{mice}) <N>:<> <pl>:<>

Stemming – Porter stemmer
•  A stemmer is a simple morphological parser that does not exploit a

lexicon
▫  It is used in Information Retrieval for keyword normalization
▫  The stemming algorithm proposed by Porter (1980) for English is based

on a cascade of simple rewriting rules
  ATIONAL → ATE (relational → relate)
  ING → ε if the stem contains a vowel (monitoring → monitor)

▫  The oversimplification makes stemmers prone to errors and failures
  university → universal, organization → organ
  sparse … sparsity, matrices … matrix, explain… explanation (failures)

▫  The Retrieval improvement is generally low (they are not used often)

Language processing
technologies

Marco Maggini

33

Porter stemmer - 1

•  Sets of literals
▫  consonants (c): all literals excluding A, E, I, O, U and Y preceded by a

consonant
▫  vowels (v): A, E, I, O, U and Y not proceded by a consonant

•  Each English word is approximated with the regular expression
▫  (C|ε)(VC)m(V|ε) where C is a sequence of one or more consonants and V

is a sequence of vowels
▫  m is referred to as word (or part-of-word) measure

  m=0 [TR][][], [][][EE], [TR][][EE]
  m=1 [TR][OUBL][E],[TR][EES][]
  m=2 [TR]([OUBL][ES])[], [PR]([IV][AT])[E]

•  The rewriting rules have the following structure
▫  (condition) S1 → S2 : If the word has the suffix S1 and the stem

preceding S1 satisfies the condition, then S1 is rewritten with S2

Language processing
technologies

Marco Maggini

34

Porter stemmer - 2

•  Conditions are built using the following atoms combined with logic
operators
▫  m - the stem measure
▫  *S - the stem ends in S (similar to other literals)
▫  *v* - the stem contains a vowel
▫  *d - the stem ends with a double consonant (-TT, -SS)
▫  *o - the stem ends with the sequence CVC where the second C is not W,

X or Y (-WIL, -HOP)
•  The stemmer consists in 7 subsets of rules applied in sequence

1.  Plural nouns and 3rd person verbs
  SSES → SS (caresses → caress)
  IES → I (ponies → poni, ties → ti)
  SS → SS (caress → caress)
  S → ε (cats → cat)

Language processing
technologies

Marco Maggini

35

Porter stemmer - 3

2.  Verb past tense and gerund
  (m>1) EED → EE (agreed → agree, feed → feed)
  (*v*) ED → ε (computed → comput, red → red)
  (*v*) ING → ε (monitoring → monitor, sing → sing)

1.  Cleanup – when the last two are used further cleanup rules are used
(deletion of double literals – hopp[ing] → hop, insertion of the e at the end
f.i. AT → ATE – comput[ed] → compute)

3.  (*v*) Y → I
  happy → happi

4.  Morphological derivations I (multiple suffixes)
  (m>0) ATIONAL → ATE (relational → relate)
  (m>0) ATOR → ATE (operator → operate)
  (m>0) BILITI → BLE (sensibiliti → sensible)
  etc… (20 rules)

Language processing
technologies

Marco Maggini

36

Porter stemmer - 4
5.  Morphological derivation II (further multiple suffixes)

  (m>0) ICATE → IC (triplicate → triplic)
  (m>0) NESS → ε (goodness → good)
  etc.. (6 rules)

6.  Morphological derivations III (single suffixes)
  (m>1) ENCE → ε (inference → infer)
  (m>1) EMENT → ε (replacement → replac)
  (*S or *T) & ION → ε (adoption → adopt)
  etc.. (18 rules)

7.  Cleanup
  (m>1) E → ε (probate → probat, rate → rate)
  (m=1 & ! *o) E → ε (cease → ceas)

  (m>1 & *d*L) → [single letter] (controll → control)

Language processing
technologies

Marco Maggini

37

Orthographic errors – correction/detection

•  Given the character sequence of a word containing orthographic
errors the goal is to compute the list of the candidate corrections
▫  It is a problem of probabilistic translation – the misspelled word may

correspond to more lexical forms each associated to a probability
  spone -> spine, sponge, spooned, spoke, shone, stone

▫  The surface level form is available with an orthographic error and more
lexical forms are compatible with it

•  There are three categories of tasks that need to be faced
▫  Detection of errors for non-words – the orthographic error yields a word

that does not belong to the language (f.i. spone)
▫  Error correction for isolated non-words
▫  Error detection and correction given the context – We consider also

errors that yield correct words (f.i. worm -> warm)

Language processing
technologies

Marco Maggini

38

Types of errors
•  The types of errors depend on the text generation modality
▫  keyboard typing (1%-3% error rate)… but also handwriting
▫  OCR for printed or handwritten characters (the error rate is quite

variable and depends of the print/write quality)

▫  Most of the errors are single (~94% for typed text)
  insertion – a character is added (change -> chanhge)
  deletion - a character is deleted (change -> cange)
  substitution – a character is changed (change -> cjange)
  transposition – two characters are swapped (change-> cahnge)

▫  Most of the algorithms are designed and optimized for single errors
  Most of the errors are typographical errors due to the use of the keyboard (f.i.

substitution of characters corresponding to keys that are close to each other in
the keyboard layout)

Language processing
technologies

Marco Maggini

39

The noisy channel
•  Errors can be modeled as the effect of a noisy channel on an

instance of the lexical form yielding a surface level form

▫  The model of the noisy channel describe the errors that can be generated
▫  A bayesian classification approach can be used

  The word w in the dictionary V that maximizes the probability P(w|o) of
generating by the observation o
  P(w|o) is a model of the errors introduced by the channel

Language processing
technologies

Marco Maggini

40

Noisy
channel

word noisy
word

correct-word = argmax P(word|observation)
 word ∈ V

Bayesian classification
•  The maximization of P(w|o) requires the computation of P(w|o) for each

word in the dictionary
▫  A more manageable form is obtained applying the Bayes theorem

  P(w) is the prior probability of the word w and it may be estimated from its
frequency in a reference corpus for the language

  P(o|w) models the possible variations (the observation o) that can be obtained
from a dictionary word w. The implementation of the model requires
additional hypotheses

  P(o) is the prior probability of the observation o, but being a term shared by all
the dictionary words it may be neglected when maximizing the probability

Language processing
technologies

Marco Maggini

41

Likelihood estimation
•  The prior may be estimated on a corpus by applying smoothing techniques

to balance the estimate for rare words (some words may not even appear in
the corpus)

▫  N is the number of words in the corpus, |V| is the number of words in the
dictionary. Each word has a bias value of 0.5 for the counting

•  The likelihood p(o|w) may be estimated given a model of the errors
(insertion/deletion/substitution/transposition) based on their context
▫  The probability of substituting a character with another one can be

estimated on a reference corpus with errors. The confusion matrix in the
entry [‘a’,’s’] reports the number of times that ‘a’ is substituted by a
‘s’ (Kernighan et al. 1990)
  ‘a’ and ‘s’ are two adjacent keys on the keyboard

Language processing
technologies

Marco Maggini

42

Confusion matrix
•  In the system proposed by Kernighan et al. (1990), 4 confusion matrices,

computed form examples, are exploited
▫  del[x,y] counts the number of times that the characters xy in the correct word

have been written as x
▫  ins[x,y] counts the number of times that the character x in the correct word has

been written as xy
▫  sub[x,y] is the number of times that x has been written as y
▫  trans[x,y]] is the number of times that xy has been written as yx

▫  With the previous choice insertions/deletions are modeled as dependent
on the preceding character

•  The matrices can be estimated by an iterative procedure
▫  the matrix entries are initialized with the same value
▫  the corrections are computed exploiting the current model o -> w
▫  the procedure is iterated using the updated model

Language processing
technologies

Marco Maggini

43

Computation of P(o|w)
•  The Kernighan algorithm is based on the hypothesis of single errors
▫  Given an observation t, the algorithm finds the dictionary words c that

can be obtained from c with just one error of the considered types
▫  The likelihood can be computed as follows

  where p is the position of the character for which the observed string t and the
correct one c differ

Language processing
technologies

Marco Maggini

44

Minimum edit distance
•  The general case in which there are no assumptions on the number

of errors can be faced by exploiting the string edit distance
▫  The bayesian technique can be seen as a method to compute a distance

between a pair of strings
  The “closest” string with respect to the observation is the dictionary string

having the highest probability
▫  The minimum edit distance is defined as the minimal number of edit

operations needed to transform one string into the other

Language processing
technologies

Marco Maggini

45

i n t e n t i o n!

e x e c u t i o n!

Track

i n t e n ε t i o n!
ε e x e c u t i o n!

Alignment

intention
ntention
etention
exention
exenution
execution

List of the operations

delete i

substitute n->e

substitute t->x

insert u

substitute n->c

Levenshtein distance
•  A cost can be associated to each editing operation
▫  For the original Levenshtein distance (1966) each operation has cost 1

  dL(intention,execution) = 5
▫  More complex weighting functions can be defined (f.i. based on the

confusion matrix). The most probable alignment is obtained
•  The minimum edit distance is computed by the dynamic

programming scheme (Bellman 1957)
▫  The basic principle is that the optimal sequence of edit operations to map

the input string into the output string is optimal also at each
intermediate step

▫  In fact, if there was a better path up to an intermediate configuration
with respect to the one computer for the optimal alignment, it would be
possible to replace it in the overall optimal sequence yielding a better
value for the total cost (this would be a contradiction)

Language processing
technologies

Marco Maggini

46

Edit distance computation
•  The computation exploits the distance matrix having a column for each

symbol in the goal sequence and one row for each symbol of the input string
(edit-distance matrix)

Language processing
technologies

Marco Maggini

47

e x e c u t i o n

0 1 2 3 4 5 6 7 8 9
i 1 1 2 3 4 5 6 6 7 8
n 2 2 2 3 4 5 6 7 7 7
t 3 3 3 3 4 5 5 6 7 8
e 4 3 4 3 4 5 6 6 7 8
n 5 4 4 4 4 5 6 7 7 7
t 6 5 5 5 5 5 5 6 7 8
i 7 6 6 6 6 6 6 5 6 7
o 8 7 7 7 7 7 7 6 5 6
n 9 8 8 8 8 8 8 7 6 5

dist[i,j] = min

dist[i-1,j]+del-cost(si)

dist[i-1,j-1]+subst-cost(si,tj)

dist[i,j-1]+ins-cost(tj)

i-1

i

j-1 j

del

ins

subst

Distance computation– subst-cost(s)=2
•  The substitution cost can be considered equal to 2 (corresponds to consider

a substitution as a deletion followed by an insertion)

Language processing
technologies

Marco Maggini

48

e x e c u t i o n

0 1 2 3 4 5 6 7 8 9
i 1 2 3 4 5 6 7 6 7 8
n 2 3 4 5 6 7 8 7 8 7
t 3 4 5 6 7 8 7 8 9 8
e 4 3 4 5 6 7 8 9 10 9
n 5 4 5 6 7 8 9 10 11 10
t 6 5 6 7 8 9 8 9 10 11
i 7 6 7 8 9 10 9 8 9 10
o 8 7 8 9 10 11 10 9 8 9
n 9 8 9 10 11 12 11 10 9 8

intention ! !!
entention !subst(i,e) !2!
exntention !ins(x) !1!
ex�tention!del(n) !1!
ex�ention !del(t) !1!
exention !subst(e,e) !0!
execntion !ins(c) !1!
execuntion !ins(u) !1!
exec�ution!del(n) !1!

iεnteεεntion!
exεεecuεtion!

context-sensitive spelling
•  The are errors resulting in correct words
▫  The error can be detected only taking into account the surrounding

words (the context)

▫  The problem can be faced by considering that some combinations of
words are less likely than others

▫  In general we can think to build a language model that allows the
computation of the probability of a given sequence of words

▫  The same model can be used to predict the most likely word to be
inserted into an incomplete sentence

▫  The probabilities can be computed from collections of texts

Language processing
technologies

Marco Maggini

49

I will arrive in fine [five] minutes
Did you witch [watch] TV?
I feel very worm [warm]!

Word counting & N-grams
•  The counting strategy should be well defined
▫  Should the punctuation marks be considered?
▫  Should character case be considered?
▫  Should morphological parsing/stemming be exploited?

•  The simplest (inaccurate) language model assumes that each word
in a text appears independently on the others
▫  We consider p(word) estimated as #word/TotWords on a significant

text corpus
▫  The text is modeled as generated by a sequence of independent events

•  A more accurate model takes into account the conditional
probabilities among adjacent words (bi-grams)
▫  We consider p(wordp|wordp-1) (f.i. computer network vs computer pear)
▫  The model is more accurate but it is more difficult to be estimated with

accuracy

Language processing
technologies

Marco Maggini

50

N-grams & sequences
•  If words at a given position in a text are considered as events, a

sentence with n words is the joint event w1,w2,…,wn characterized
by a probability distribution

▫  the probability can be factorized by applying the chain rule

  the probabilities p(wi|w1..wi-1) model the generation of a word given the
preceding words

  Without any assumption the expansion is exactly equal to the joint probability
(the derivation is based on the definition of conditional probability)

  The problem is the estimation of p(wi|w1..wi-1) from observations, especially
when i increases

Language processing
technologies

Marco Maggini

51

Bi-grams Language Models
•  A simplifying assumption is to consider the dependence only

between adjacent words
▫  With this assumption we only need to estimate the conditional

probabilities for bi-grams (pairs of adjacent words)
▫  Hence we need to estimate the probabilities p(wi|wi-1)
▫  Given this assumption it results that

  the p-th word in the sequence is independent of all the others given the
preceding one

  The assumption correspond to a Markovian property, i.e. the sequences are
generated by a Markov chain whose states are the words

  actually the p-th words depends on all the preceding ones but through the
chain of choices that have been taken at each step of the generation

Language processing
technologies

Marco Maggini

52

N-grams Language Models
•  The model can be generalized by considering N-grams
▫  We assume that a word in the sequence is independent given the

preceding N-1 words
▫  The assumption corresponds to the following approximation

▫  The sequence probability is approximated as follows

  where we assumed that the preceding words with index less than 1 are equal to
a special symbol “sequence start”, f.i. for bigrams it holds the following

Language processing
technologies

Marco Maggini

53

N-gram Language Models- example

•  The N-grams model dependencies deriving from
▫  grammatical rules (f.i. an adjective is likely to be followed by a noun)
▫  semantics restrictions (f.i. eat a pear vs. eat a crowbar)
▫  cultural restrictions (es. eat a cat)

•  The probabilities depend on the considered context
▫  the language use in a restricted specific context can be modeled
▫  f.i. Berkely Restaurant Project (Jurafsky et al., 1994)

Language processing
technologies

Marco Maggini

54

eat on 0.16 eat Thai 0.03
eat some 0.06 eat breakfast 0.03
eat lunch 0.06 eat in 0.02
eat dinner 0.05 eat Chinese 0.02
eat at 0.04 eat Mexican 0.02
eat a 0.04 eat tomorrow 0.01
eat indian 0.04 eat dessert 0.007
eat today 0.03 eat British 0.001

Estimation of the models
•  The probabilities have values less than 1
▫  The combination formula is a product that tends to become quite small

with potential underflow problems
▫  In general the computation is performed using the (logprob)

•  The model estimation can be obtained by counting the N-grams and
by normalizing the counts on a reference corpus
▫  f.i. for bigrams the relative frequency is computed as follows

▫  the estimate of the relative frequency is an example of Maximum
Likelihood Estimation (Max P(corpus|M))

Language processing
technologies

Marco Maggini

55

Limits of N-grams based LMs
•  The model accuracy increases with N
▫  The syntactic/semantic contexts are better modeled
▫  The drawback is the difficulty in the model parameter estimation (the

conditional probabilities)
▫  If the dictionary contains D terms (word forms with inflections) there are

DN N-grams

  A corpus C words “long” contains C N-grams (each word generates exactly a
sample for one N-gram)

  For a significant estimate of the parameters, the corpus size should increase
exponentially in the order N of N-grams

  f.i. given D=30000 there are 900 millions bigrams and a corpus with
C=1.000.000 words would not be adequate to compute an accurate estimate
for the language (especially for the most rare bigrams)

  Hence, the resulting model can be heavily dependent on the corpus exploited in
the estimation of the parameters

Language processing
technologies

Marco Maggini

56

Smoothing
•  One of the problems in the estimation of the N-gram probabilities

on a corpus with limited size is that some of the “valid” N-grams
might not appear at all
▫  The matrix for the computation of the bigram frequencies is very sparse

in general
▫  Bigrams with 0 occurrences would be considered with 0 probability
▫  Analogously the estimate of the probabilities for the N-grams with low

frequencies is not very accurate
▫  Smoothing techniques can be applied to give a better estimate for the N-

grams with low (zero) probability
▫  In general these techniques apply a fix on the counts given some criteria

Language processing
technologies

Marco Maggini

57

Smoothing – add-one

•  The most simple technique is the add-one
▫  1 is added to all counts
▫  It is simple but its performances are not good
▫  f.i. for the estimate of the unigram (single words) probability estimate

  #w* is the count with the add-one “fix”
▫  For bigrams the estimate is fixed as follows

  in this case the variation may be significant since |D| is usually much greater
than #wp-1 (all the bigrams are considered valid)

Language processing
technologies

Marco Maggini

58

Smoothing – Witten-Bell Discounting 1

•  It is based on the idea that a non observed event is an event that has
not occurred yet (but it can)
▫  the probability of the occurrence of an N-gram with null frequency is

modeled with the probability of observing an N-gram for the first time
  The count T of the events observed only one time is used to estimate the count

of those that have never been observed
  if many events have been observed it is likely that many events will be observed

in the future
▫  The number of N-gram observed for the first time is exactly the number

of different N-grams observed in the corpus
▫  The total probability of the non-observed N-grams - p(new) – is

estimated by

Language processing
technologies

Marco Maggini

59

T is the number of observed new events
N is the number of observed events

Smoothing – Witten-Bell Discounting 2

•  If we assume that all the non-observed event have the same
probability

▫  The probabilities of the observed events should be coherently reduced

•  For bigrams (N-grams) the considered counts are conditioned with
respect to the context
▫  The considered counts are T(wx) – number of new types of observed

bigrams where wx is the preceding word – and N(wx) – total number of
bigrams that have wx as preceding word

Language processing
technologies

Marco Maggini

60

Smoothing – Witten-Bell Discounting 3

•  The total probability of the non-observed bigrams related to wx is

▫  By a uniform distribution of this probability on all the non-observed
bigrams it can be obtained

▫  For bigrams having non-null frequency the probability is computed as
follows

Language processing
technologies

Marco Maggini

61

Smoothing – Good-Turing

•  The probability of the N-grams with higher counts is redistributed to the N-
grams with null (or low) counts
▫  Nc is the number of N-grams occurring c times (N0is the number of

bigrams appearing 0 times, N1 those with counts equal to 1,..)
▫  The Good-Turing estimate modifies the counts such that

  f.i. the count for non-observed bigrams (c=0) is estimated as the number of
bigrams observed just once divided by the number of the never observed
bigrams (the |D|2 valid bigrams except the observed ones)

  in general it is applied only for c ≤ k (f.i. k=5) that is only the counts above a
certain threshold are considered reliable

Language processing
technologies

Marco Maggini

62

Backoff
•  If there are no observations for a given N-gram, its statistics can be

estimated exploiting the correlated N-1-grams
▫  to estimate the probability P(wp|wp-1wp-2), we can exploit the knowledge

on P(wp|wp-1)
▫  to estimate the probability of the bigram P(wp|wp-1, we can exploit the

available information on the unigram P(wp)
•  The backoff techniques exploit the hierarchy among the N-grams to

improve the estimates
▫  f.i. for trigrams the following estimate can be exploited

Language processing
technologies

Marco Maggini

63

backoff & discounting
•  The smoothing/discounting techniques “extract” part of the probability

from the observed events to distribute it (uniformly) to non-observed events
▫  A smoothing technique defining the amount of probability to be assigned

to non-observed events can be combined with the backoff method giving
a modality to distribute the probability among the considered events

▫  The backoff assigns a non null probability to events that with the MLE
estimate would have a zero probability. This added probability is to be
divided among all the events

▫  The general probability estimate can be computed as follows

  where θ(p) = 0 if p>0 and θ(p) = 1 is p=0 selects/deselects the backoff

Language processing
technologies

Marco Maggini

64

Backoff & discounting – computation 1

•  The probabilities of the non null N-grams are estimated as

▫  where the count with discount #* allows the transfer of the probability to
the non observed events

▫  The amount of probability to be transferred from a given context that
represents a (N-1)-gram is

▫  Each (N-1)-gram will receive only a fraction of β

Language processing
technologies

Marco Maggini

65

Backoff & discounting – computation 2

•  The probabilities of the (N-1)-grams are computed from β by
normalizing with respect to the total assigned probability
▫  the value of the backoff coefficients α is derived

▫  the amount of discount applied to each N-gram and the fraction
redistributed to the (N-1)-grams are peculiar of each N-gram

▫  Summarizing for trigrams the backoff computation is the following

Language processing
technologies

Marco Maggini

66

